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Abstract

A body of literature has evolved for multivariable systems which is concerned
with the placement of closed-loop eigenvalues and/or the question of decoupling. Atten-
tion is turned to the broader question of realizing specified rational trawn: fer matrices
with a standard feedback conlizguration for linear, time-invariant, finife -dimensional,
real, multivariable, dynamical plants in this paper. A complete and pr --ise realiza-
tion theory for asymptotically-stable plants is developed. Unstable plaats with asymp-

totically-stable hidden modes are also extensively treated.
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Introduction

A body of literature has evolved which is concerned with the placement of closed-
loop eigenvalues and/or the question of decoupling in multivariable systems [1]-[11].
Attention is turned in this paper to the broader question of realizing specified rational
transfer matrices. A standard feedback configuration is considered and attention is
restricted to linear, time-invariant, finite-dimensional, real, dynamical plants. Spe-

cifically, the standard feedback configuration shown in Fig. 1 is studied. It is assumed

Controller Plant

u y
o +»@ —» -—g—0
c P

Feedback Network

f

Fig. 1. Standard Feedback Configuration

that the plant, controller, and feedback network possess, respectively, the real state-

variable descriptions

.

. x =F x +Gu (1)
~p T p~p p~p

13

4 =Hx +4J u , (2)
! Ip ” Tpep” Tpep

£ .

éa . x =Fx +G u (3)
% ~C Cn~C C~C

E‘

i. Xc - Hc§c+Jch ' (4)
g and

; xp = Fexpt Gy (5)
£ _

§ Y = HeXet Jge - (6)
i

g
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As a result of tLe interconnection of plant, controller, and feedback network in
the configuratiou of Fig. 1 it follows that

BC = E - Zf ’ (7)

4 ~p = Xc ’ (8)
- gnd .

E %= Yp =Y (9

The sizes of the matrices in (1) through (6) are deterrnined by the dimensions of the

vectors xp. up, yp. X, etc. The symbols used to denote these dimensions are:

v_ = dimx , (10)
P ~p
3 Ve © dim:‘c-c . (1
vy = dimx, (12)
n :dimyp:dimy:dimu . (13)
m = dimgp = dimzc R (14)
r =dimu= dimuc = dimyf . (i5)

It follows from (1) through (6) that the a x m plant transfer matrix P(e), the
m x r controller transfer matrix Z(s), and the r x n feedbaock network transfer yma-

trix F(s) are given by

P(s) = Hp(slvp FG, T, (1)
Cle) = Hisl,, - FalG +a, (17)
and
’ F(s) = Hy(sl - Ff)‘lcf+ Je . (18;

[Tt is evident from (16)-(18) that the symbol used in this paper for the, k x | identity
matrix is lk.] The transfer matrix relating the transform of the output, ¥(s), tc the

transform of the input, U(s), is easily shown to be

T(s) = P(s)Cis)[1_+ F(s)P(s)C(s)]!

R

: [1n+P(s)C(s)F(s)]’lP(S)C(s) . (19)

| I3
I
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Clearly, (19) is meaningful if and only if (hereafter denoted iff)

det[lr+F(s)P(s)C(s)] = det[1n+P(s)C(s)F(s)] £0 . (20)

Moreover, it is desired that the basic feedback configuration be dynamical. It is shown
in [12] that this is the case iff

lim T(s) = finite matrix (21)
S=®
or, equivalently,
det[1r+F(m)P(m)C(°°)] = det[lr+JprJc] $0 . (21)

Practical arguments are also given in [12] which justify the limitation of the develop-

ments presented here in accordance with the following four restrictions:

R;- The number of plant inputs m equals or exceeds the number cf plant
outputs n:i.e., m > u.

RZ’.' The number of sysiem inputs r equals the number of system outputs
n: i.e., r = n.

R3. The normal rank of P(s) is equal to the numkter of its rows: i.e.,
normal rank P(s) =.n.

R4. The m x n controller matrix C(s) is chosen so that the square nx n

matrix P(s)C(s) has normal rank n: i.e., det[P(s)C(s)] # 0.

The first significant contribution of the present paper is best described with the

aid of the following definition.

Definition 1: An n x n rationa’ matrix T(s) is said to be realizable for P(s) if
for some choice of asymptotically-stable dynamical controller and feedback net-
work the standard feedback configuration of Fig. 1 is a dynamical asymptotically-

stable system possessing the transfer matrix T(s).

The necessary and sufficient conditions which T(s) must satisfy in order that it
te realizable for P(s) are derived here for the case in which the plant is asymptotically
stable and rank P(jw) = n for all w infinity included. It 1s shown for this case that the
limitations on the realizable T(s) are due to the nonminimum phase properties of the
plant. These properties are completely characterized for asymptotically-stable plants

by the plant structure matrix which is introduced in the sequel.

The se.ond significant contribution is the treatment of unstable plants whose un-

controllable and/or unobservable modes ("'hidden modes'', are asymptotically stable.

* The normal rank of a rational matrix is the order of the largest minor which is not
identically zero.
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It is shown that any unstable plant with asymptotically-stable hidden modes can be
stabilized with a modified dynamical observer of the Luenberger type [2]. [13}-[19].
Moreover, the structure matrices of the original and modified plant are shown to be

strictly equivalent and the implications of this fact are thoroughly discussed.

The notation used in this paper is now summarized for easy reference, and some
basic notions associated with a matrix function of a complex variable ''s'' are defined.
For an arbitrary matrix A the transpose, the complex conjugate, the complex con-
jugate transpose, the inverse, the trace and the determinant of A are denoted by
A', A, A*, A-l, tr[A], and detA, respectively. A diagonal matrix A with diagona®
elements 1,, Appeens )‘n is written as A = diag[)\l. )‘2' cees Xn]. Column vectors are
represented by x, y, etc., or in the alternative fashion x = [x.k Xt xn] " whenever it
is desirable to indicate the components explicitly. The n x n identity matrix, the nx n
null matrix, the n-dimensional zero vector, and the n x m nuli .matrix are denoted by
ln’ On’ o and On, m’ respectively. The n-dimensional colummn vector wi(trl:) unity
element in the i'th row and all other elements equal to zero is denoted by e, or
simply e, when no confusion is likely to result. The right iuverse of a p x q matrix

A is the q x p matrix A"l which has the property Aal- 1p.

A matrix A(s) is rational when each of its elements is a rational function of s.
When every element of a rational matrix is finite at infinity it is called a proper ma-
trix. The matrix A(s) is analytic in a region of the complex s-plane when each ele-
ment of the matrix is analytic in the region. A point h is a pole of A(s) when some
element of A(s) has a pole at s = so. A(s) is said to be real if A(s) = A(s). When the
order of the largest minor of A(s) not ide itically zero is v, then A(s) is said to have

normal rank equal to v. Finally, the notation

A,(s) = A(-3) (23)
is used which for real matrices - the only kind of interest here - reduces to

Als) = Al(-s) . (24)




Stability of the Standard Feedback Configuration

The basic requirements imposed on the overall system in Fig. 1 are that it be
dynamical and asymptotically stable. Conditions for the former to be true are stated
in the introduction. The latter requirement is discussed here. The first careful treat-
ment of the stability question for multivariable feedback control systems is due to
Chen [20]. Applications and extensions of Chen's results a ‘e given by Youla [12].
Youla established for the standard feedback configuration of Fig. 1 the following theorem.

Theorem 1: When (22) is satisfied, the standard feedback configuration is
asymptotically stable iff the scalar function

A(s) = Ac(s)bp(s)Af(s)det[1n+ P(s)C(s)F(s)] (25)

is free of zeros in Res > 0. In (25),

/\c(s) = dot(slvc - Fc) , (26)
= 1 -

H Ap(s) det(s v Fp) , (27)

2 P

X
' and
4 Af(s) = det(sl\)f - Ff) . (28)
; Theorem 1 indicates that in general one cannot determine stability of the standard
; feedhack configuration solely from knowledge of the transfer matrices C(s), P(s), and
: F(s). One must in addition have knowledge of Ac(s), Ap(s), and Af(s) which depend on

the internal structure of the individual system components. Fortunately, however,
practical considerations permit simplifications. Firstly, the controller and feedback
network are in accordance with DeJinit'on 1 to be asymptotically stable. Thus, both

Ac(s) and Af(s) are free of zeros in Res > 0. Secondly, it is shown below that one

can write

A _(s) = h (sl (5] (29)
P e ¥

where h_(s) is a polynomial whose zeros are associated with the hidden modes of the
plant and ¥_(s) is the characteristic denominator of P(s): i.e., ¥ (s) is the monic

least common multiple of the denominators of all the minors of P(s) when these minors
are expressed as the ratio of two relatively prime polynomials. Obviously, for every
practical plant hp(s) is free of zeros in Res > 0, Otherwise, it is not possible for the
overall system to be asymptotically stable., It now immediately follows from Theorem 1
that




Theorer, 2: When (22) is satisfied, when the hidden modes of the plant are
asymptotically stable, and when the controller and fe:dback networks are
asymptotically stable, then the standard feedback configuration is asymptotically
stable iff

Ao(s) = ﬁp(s) det[ln+P(s)C(s)F(s)] (30)

is free of zeros in Res > 0.

Theorer 2 is significant in that the test for stability embodied in it can be
carried out solely from knowledge of the transfer matrices C(s), P(s), and F(s).

It is now established that (29) is a valid decomposition. The result follows from
the fact (see [21] and Theorem 5-19 of [22]) that there exists a real nonsingular ma-
N

trix K and square matrices Fp’ FZZ’ and F33 such that

F o, F,
1 Py P
Fp = K le FZZ F23 K , (31)
Ov v Ov Y F33
P3 P Py Pp
L o
H:[ﬁ\o |H]K , (32)
o p nv a
P2
and
G
| —2—
G =K G s (33)
P a
ov ,m
P3 4
whereﬁ isnxv_, E‘i isv. xm, and
P P P P
V. o +V. +Vv. =y . (34)

Moreover, {}?‘p, ép} is a completely controllable pair, [Fp. Hp] is a completely ob-

gservable pair, and

~ ~ _l A
P(s) = H (sl -F G +7J . 35
(s) = H (s1, N (35)




In addition,

i Ll I .. -
P l ip(s) = det(slv - Fp) (36)

P;
and one can easily establish from (31) that

R Ap(s) = ﬁp\s) det\slv - FZZ) det(slv -F33) , (37
P2 P3

or

hp(s):cet(slv ~F, )det(sl -F,,) . (38)
Py P3
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Nonminimum Phase Properties

The objective in this section is the establishment of those properties of the given
plant which prevent the realization with F(s) = On of an arbitrarily srecified rationa?
transfer matrix T(s). These properties are referred to as the ronminimum phase
properties of the plant. With F(s) = On it immediately iollows from Theorem 2 that
the overall system cannot b~ asymptotically stable uuess ¥_(s) is free of zeros in
Res > 0. Fence, closed-right-half-plane zeros of ﬁp(s) contribute to the nonminimum
phase properties of the plant.

When F(s) = On then
T(s) = P(s)C(s) . (39)
A necessary condition for T(s) - 1n to be realizable for P(s) is, therefore, that
Cls) = P Ms) , (40)

where P'l(s) is the rijht inverse of P(s). Since C(s) must be analytic in Re s >0,
equation (40) indicaizs that P'l(s) must be analytic in Res > 0. This is never possible
when the rank of P(s) is les: than n, the normal rank of P(s), in Re s > 0. Thus, in
Res > 0 any decrease in the rank of P(s) from its normal rank also contributes to the
nonminimum phase properties of the plant. The nonminimum phase preperties cited
abzve are shown in this paper to be those properties of the plant which restrict the

.lass of transfer matrices that can be realized.

When \bp(s) is free of zeros in Re s > 0, the nonminimum phase properties of the

plant are completely characterized by the plant structure matrix

~

JP HP
T(s) = . (41)
E; I—KF -sl
plp v
P
Thut this 1s the case follows from the identity
I -1
1n -Hp(Fp— SI\; ) P(s) On,v
P P ,
5 ; S Tle) = | 1 (42)
v_,n v G | F_-sl
Py P P | P v

It is clear from (36) that the inverse in (42) exists for Res > 0 when {_(s) is free of

zeros in Res > 0., In this ca .-, then, it immediately follows from (42) that

2 1k T(s) = Vp +rank P(s), Res > 0 , {43)
1



Plant structure matrices are utilized in the sequel when the unstable plant is con-

sidered.

It is possible to factor any plant transfer matrix into the product of two matri-es,
one of which accounts for the nonminimum phase properties of the plant. This factori-
zation and its properties are novs discussed. Given any n x m plant transfer matrix
P(8) of normal rank n one c2 . always write provided the rank of P(jw) is n for all
finite w that

P(s) = V(S)Po (s) , 144)
where the n x m matrix Po(s) together with its right inverse P;l(s\ are analytic in
Re s > 0 and the n x n matrix V(s) satisfies

V. (s)V(s) = ln . (45)
The above stated results follow easily when Theorem 2 of [23] is applied to achieve
the spectral factorization

G(s) = P*(s)P(s) = Po*(s)Po(s) . (46)

It is not difficult to verify that the m x m matrix G(s) has normal rank n and that

the rank of G(jw) is n for all finite w. A :omputer program for factoring G(s) is
available [24].

The paraconjugate unitary matrix V(s) accounts for the nonminimum phase
properties of the plant. Any zeros of ¥ (s) in Res > 0 are zeros of the characteristic
denominator for V{s) and the rank of V(s) decreases in Re s > 0 where rank P(s) does.

It is also useful to note that since
V(s) = P(s)P;'(s) (47)

V(s) is analytic in Res > 0, 0 > 0, when P(s) is analytic in the :ame region. More-

over, since P(s) is a real matrix V(s) is a real matrix, and it follows from (45) that
. . . . * .
V,(GOV(je) = V! (-ju)V(iw) = V' (ju)V(jw) = 1, - (48)

It is easy to infer from (48) that

lim V{s) = V(=) = finite matrix . (49)
g«—®
In addition to the properties already cited for V(s) one has from (47) and the fact that
Po(s) is unique to within a constant real orthogonal matrix multiplier on the left that

V(s) is unique to within a constant real orthogonal matrix multiplier on the right.
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From (44), (45), and (49) it follows that

lim Po(s) = lim V'l(s)P(s) = lim V_(s)P(s) = finite matrix ; (50)

g=® §e0® [
The rational matrix Po(s) is, therefore, analytic at infinity. Moreover, rank Po(s) =n
for all Res > 0. This last property is a consequence of

P (s)p‘l(s) S T (51)

For if rank P (s) < n for some s = so Res > 0, then (51) requires that P (s) have -
0 But this contradicts the analytlmty ot P (s) in Res > 0. Tbe argu-
ments just given apply equally well at infinity provided the additional restriction

apoleats-s

rank P(jw) = n for infinite w is imposed. In summar-, Po(s) is analytic and rank
Po(s) = n in Re s > 0 infinity includecd when rank P(jw) = n for all w infinity included.

A method for constructing a right inverse for Po(s) satisfying

Jim P(-)l(s) = finil. matr:x (52)

g @

is now given. The construction is accomp.ished by introducing the change of variable

_1l+z
51 2

(53)

This transformation maps the region Re s > 0 of the complex s-plane into the region
|z|f 1 in the complex z-plane. Clearly, z = 1+j0 is the mapping of all points in the

s-plane infinitely far from the s-plane origin. The matrix

W(z) = P (s) (54)

1tz
SE1-z

is next considered. In view of the properties of P_(s), it follows that W(z) is analytic
in |z|5 1 and rank W(z) = n for |z|_f 1. The matrix W(z) therefcre has the Smith-
McMillan representation [25], [26]

Wiz) = M(2)[A=)]0,  INGz) (55)
where M(z) and N(z) are elementary polynomial matrices of appropriate size and
Mz):diag[)\l(z),Xz(z). ...,Xn(z)] . (56) .

The rational functions )\i(z) are all analytic in lz\f 1. Moreover, Xi(z) # 0 for any z
satisfying |z|_§ 1. For if the contrary is true then rank A(z) <n for some z satisfying
]z|_<_ 1 which contradicts rank W(z) = n in the region lzl_f 1. Hence, for any real

rational matrix K(z) analytic in |zl_§ 1

10
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is a right inverse of W(z) which is analytic in |z| < 1. It immediately follows that

P;l(s) = wlz) (58)

-s-1
HEPYS |
is a right inverse of Po(s) analytic in Re s > 0 infinity included. The above results
are summarized in

Lemma l: A real rational proper n x m matrix P(s) of normal rank n satisfying
rank P(jw) = n for all ® infinity included is expressible as P(s) = V(s)Po(s) whe e
the n x n matrix V(s) and the n x m matrix Po(s) are both real rational proper

matrices having the properties:
a) V*(s)V(s) = ln'

b) When P(s) is analytic in Res > 0, ¢ > 0, then V(s) is analytic in the same

region.

¢) All zeros of the characteristic denominator of P(s) in Res > 0 are zeros

of the characteristic denominator of V(s).
d) The rank of V(s) decreases in Re s > 0 wherever the rank of P(s) does.
e) Both Po(s) and P;)l(s) are analytic in Re s > 0 infinity included.

f) Po(s) is unique to within a real constant orthogonal matrix multiplier Q

on the left and V(s) is unique to within the matrix multiplier Q' on the right.

11
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The Main Theorem on Realizability of T(s)

For the class of asymptotically-stable dynamical plants satisfying rank P(jw) = n

for all w infinity included one can always choose F{(s) = 0n and
Cls) = Pyl(siL(s) (59)

; where the n x n real rational proper matrix L(s) is analytic in Res > 0 but is other-

] wise arbitrary. For this choice of controller

lim C(s) = p(‘)l(«-)L(c) = finite matrix (60)
s-0

and any minimal realization (completely controllable and completely observable realiza-

tion) of C(s) is asymptotically-stable. Moreover,

" Is) = P(s)C(s) = V(S)PO(S)PBI(S)L(S) = V(s)L(s) (61)

St o DN

is realized. The traisfer matrix T(s) is real, rational, and proper; the overall system -
plant with controller — is, therefore, dynamical. Moreover, V(s) is analytic in

Res > 0 since P(s) is. Thus, T(s) is analytic in Re s > 0 and the system is asymp-
totically stable.

The above observations shew that a sufficient condition for T(s) to be realizable
! for P(s) when the plant is asymptotically stable .a rank P(jw) = n for all w infinity
; included is that T(s) = V{s)L(s), where V(s) und L(s) are as previously defined. It is

i now established that this structure for T(s) is also necessary.

Multiplying (19) on the left by F(s) one obtains
F(s)T(s) = [1_+ F(s)P(s)C(s} - 1_]J[1_+ F(s)P(s)C(s)]™"  (62)

or
F(s)T(s) = 1_- [1_+ F(s)P(s)C(s)]" . 3)

Since F(s) and T(s) must both be analvtic in Re s > 0, it follows from (63) that
3 [lr+ F(s)P(s)C(s)]-1 must also be. Thus,

T(s) = V{s)P (s)Cls)[1_+ F(s)P(s)C(s)]"} (64)

and

L{s) = P (s)C(s)[1 4 F{s)P(s)C(s)]"} (65)

is analytic in Re s > 0. Moreover, L(s) ic real and rational, and one can establish
with the aid of (22) that L(s) is nroper as well when F(s), P(s), and C(s) are real,

rational, propevr matrices.

12
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The above results are summarized in the following theorem:

Theorem 3: Given a dynamical plant with asymptotically-statle hidden modes
and a real, rational, proper, n x m transfer matrix P(s) having the properties:

a) Normal rank of P(s) is n < m,

b) P(s) is analytic in Re s > 0 infinity included,

c) Rank P(jw) = n for all w infinity included, then the necessary and sufficient
condition for T(s) to be realizable for P(s) is that T(s) = V(s)L(s) where

d) L(s) is any real, rational, proper, n x n matrix analytic in Res > 0,

e) V(s) is determined by the factorization P(s) = V(s)Po(s) described in Lemma 1.

Theorem 3 is the main theorem on the realizability of T(s). It is restricted to
plants which satisfy rank P(jw) = n for all w infinity included. For plants with transfer
matrices whose rank is less than n at points on the imaginary axis it is shown in the

appendix that it is possible to factor the plant transfer matrix so as to obtain
P(s) = V“(s)Pq(s) (66)
where the n x m matrix P_(s) is analytic in Re s >0 infinity included, rank P_(jw) = n

for all w infinity included, and Vq,(s) is analytic in Re s > 0 infinity included. The

transfer matrix Pq(s) can be factored in accordance with Lemma 1 to oobtain

P (s) = V(s)P . 67

q(s; (s) 0(s) (67)

where V(s), P _(s), and P;l(s) are analytic in Re s > 0 infinity included. Combining
(66) and (67) yields

P(s) = Vn(s)V(s)Po(s) . (68)
It immediately follows for the choice F(s) = On and C(s) = P;)l(s)L(s), where L(s) is
any real, rational, proper matrix analytic in Re s > 0, that

T(s) = Vi, (s)V(s)L(s) . (69)
A sufficient condition for T(s) to be realizable for P(s) is, therefore, that it be factnr-

able in accordance with (69). This condition is not necessary, however. Other me-

thods for factoring P(s) exist and the representation (68) is not unique.

13
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Unstable Plants

The preceding developments establish for a large class of asymptotically-
stable plants the transfer matrices T(s) which can be realized with the standard feed-
back configuration. The class of plants for which P(s) is not analytic in Res > 0 is
treated in this section. Attention is restricted to those plants with asymptotically-
stable hidden modes: only plants of this type are practical. Before proceeding, it is
important to establish certain facts which justify the procedure introduced in the se-

quel.

When P(s) is not analytic in Re s > 0, the characteristic denominator ¥_(s)
contains zeros in Res > 0. It immediately follows from Theorem 2, then, that the
standard feedback cornfiguration cannot be asymptotically stable with F(s) = On' This

fact prevents the extension of Theorem 3 tc unstable plants.

A more striking difficulty with the standard feedback configuration is that the
class of T(s) realizable for P(s) can be empty for some unstable plants. A simple
example is the single-input-output plant whose transfer function is (s-2)/{s-1)(s - 3).
It is not difficult to establish that there exists no asymptotically-stable controller and
feedback neiwork which yields an asymptotically-stable standard feedback configuration
for this plant. This result suggests the need for additional elements to first stabilize
the plant before including it in a standard feedback configuration. In order to handle
all cases, the additional elements should be sufficiently general so that they permit
the stabilization of any unstable plant with asymptotically-stable hidden modes. It is
shown below that any plant of the type just described can be stabilized using a modi-
fied Luenberger observer [2], [13]-[19].

In view of (31) thru (34), there is no loss in generality in assuming that the plant
has the state variable description (1) and (2) in which ¥ , G _, and H_ are given, re-
spectively, by (31) thru (33) withK = 1,, . The design of the modified Luenberger

observer begins with the formation of th% modified plant output vecto:

v =Ely -7 = EH , 70)
Ip = Elyp -8 pop (
where
!
E:[e. e, e] (71)
~11~12 nJ.h

and iy, i,,..., iy are the numbers of the h linearly independent rows of Hi . When

Jp = On m’ it follows from the assumption that normal rank of P(s) is n that h = n.
In general, however, rank Hp = h < n is possible.

The plant state vector can be written as

% =[x' x! x'J , (72)
~P |~*P} ~P2~P3

l‘.'



< ce')‘(t'to) for real constants ¢ > 0 and A > 0 for all initial error vectors at t=¢t_.

where

dimx_=v_ , i=1,2,3 . (73)
Py P

The objective is the design of an observer with state vector

=T + . 74
z=Tx, *e (14

where the error vector ¢ is exponentially asymptotically stable: i.e., ||e||=Je3;e

0
The observer dimension is given by

Vog=dimz=v -h . 15
0 z=vp (75)

That Vo 2 0 is an immediate consequence of the fact that the rank of the n x vp, matrix

»

H_ 1is at most vpl. The choice of the Vo X vpl matrix T is discussed in the follo »ing

paragraphs. Before proceeding it is first noted that

y =[H |o Hlx =Ax +8 . 76
Y= [Hploy, pl 2 Jxp = Hpxp a¥p, (76
2
where
H = EH (77)
p P
and
H =EH_ . (78)
a a

When T is chosen so that the Vp, X \)p matrix [FII; lT'] is nonsingular, then
1 1

~ _1 a

H y
¢ B (E] -, ..
~pp LT z ~1

"'pl ’ (70)
where
.=l H x
H a~p
-1 3
e [ - ] [ : ] , (80)
is an asymptotic estimate
(tim %_ = lim x_ )

teo Pl t.Le~Py

of xp provided the error vector ey is asymptotically stable. The asymptotic stability

of €)
with K = 1\) immediately yields
p

1is deterriined by the behavior with time of e and xp « Using (1), (31), and (33)
~ ~r3

15
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Xp, " F33§p3 . (81)

Since the hidde: modes of the plant are asymptotically stable, the eigenvalues of F,,
all have negative real parts. Thaus, xk‘3 is exponentially asymptotically stable.
The determin:.tion of the behavior with time of e requires more work. The

dynamical part of the observer of interest is described by

z=Az+By +Cu_ . 82)

Substituting (74) and (76) into (82) and assuming that the matrix equations

TF - AT=BH
p P

- (83)
TG =C
P
are satisfied yields
e=Ae+ (BHa- TF13)§p3 ) (84)
when it is recognized that
x =Fx +F +Gu . (85)

X
~py  pP~p; < 13=py  Tp-p

Since Xp, is exponentially asymptotically ctable, it follows from (84) that e is ex-
ponentially asymptotically stable whenever A has only eigenvalues with negative real
parts, It ir‘nmediately follows from the fact that {i?‘p, ﬁp} is a completely-observable
pair that {F_, g } is also. Observer theory then guarantees that one cin always find
matrices A, B, C, and T which satisfy (83) and the requiremen: that [ﬁ; | T’] be non-
singular and A have only eigenvalues with negative real parts.

It is important to note that the design of the observer described above depends
only on the matrices i‘p' &p. I?Ip, and J . These matrices can be taken as the ones
associated with any minimal realization of the plant transfer matrix. Fortunately,
algorithms are available for generating minimal realizations starting with the plant
transfer matrix {(see [22], Chap. 6). This fact is important since it shows that the

observer can be designed from knowledge of only the terminal properties of the plant.

The observer under consideration can be incorporated in a feedback loop around

the origir:] plant as shown in Fig. 2. In the figure,

ﬁg-l
mJLﬂ= 7 (86)

16
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and

U
=[y! u’ . 87
9y = [y, 5] (87)

This subsystem is referred to as the modified plant in the sequel.

u x =F x +G u
p 4+ p 7 5p%p " p | Y
)X —p —9-
v.=Hx +J u
5 p~p “pP~p
+ | f
i_: K()"‘é - .

~P) % z =Az+[BE|(C-BEJ Nug u,
? Mpl ~ ~ p ~ o

X - L,z + LIE[lnI-JP]go

~p

Fig. 2. Modified Plant

It is now established that one can always chose the feedback matriz K0 so that
the modified plant is asymptotically stable. With

1
[ ' ' !
=[x x' x € (88

it is not difficult to verify that

[ A A ~ ~ ~ -1
F+CKy | O, | | Fa+GRILH | GRL,
Py P
oo F127 %% | Taz | Faat @Kol | Gfole |
ov Y Ov , Vv F33 ov , Vv
P3’ P Py P Py’ 0
Ovo,v Ovo,v BH, - TF, A
L P pz _
P
G
a
4} ———| & (89)
°p
o\) ,m
P3
o
L vo,m
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when (84) is recalled and it 18 recognized that for a properly designed observer

Ep = KO’E})l + l..‘.;.p = Ko(fpl + Ll;Ia. §p3* L .e-) +§p : (90)
The eigenvalues of the coefficient matrix of n in (89) determine the stability of the
system. It is not difficult to show that the ei;envalues of this matrix are the eigen-
values of A, FZZ’ F33, and i“p+épKo. The eigenvalues of A are the observer eigen-
values which are chosen to have negative real parts. The assumption that the hidden
modes of the plant are asymptotically stable is equivalent to all the eigenvalues of F,,
and F33 having negative real parts. Since {i" , ép} is a completely-c:ontrgllable pair,
it follows that one can always choose a K0 so that the eigenvalues of F_+ G Ko all have
o is described in [27].
Hence, it is always possible to make the modified plant asymptotically stable. The

negative real parts. An algorithm for choosing the matrix K

above is summarized in

Theorem 4: Any real, linear, time-invariant, finite-dimensional, dynamical
plant with asymptotically-stable hidden modes can be stabilized using a suitably

designed dynamic observer.

Attention is now turned to the computation of the modified-plant transfer matrix.
It follows from (90) that

-8 i In+7r
Y [HP+JPKO|On’ ]Ha+JrK0L H |1 ¥ L,In+:

1"a'"p 0 o * (91)

v i

P I'~P

Using the fact that the inverse of a block triangular matrix with two square blocks on
the diagonal is also a block triangular matrix of the same form one readily deduces
from (89) and (91) that the transfer matrix relating Yp(s) to ﬁp(s) is
-12

(s1,, -F -GKI)G 41 . (92)

P(s) = (H +J K
(8) = (H + 35 plppo)pp

0

The matrix P(s) is the modified-plant transfer matrix.

It immediately follows from the identity

A H +J K 7 H 1 K
P p 'pO P P m 0
- Y = ry Y {93)
G F +G K,_.-sl - |G F -sl o) 1
0 V) V) v, m V)
P PP Py P ST B S 4] Py
-

that the structure matrices for the original and modified plants are strictly equivalent:

18
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J H4+J K

- P p PO
MNs) == ~ A (94)
Gp Fp+GpKo- slvp
1
is the structure matrix for the modified plant and
E I H
P P
T(s) = | - (95)
Gp Fp - slv
! o

ig the structure matrix for the original plant. The mcdified plant is designed to be
asymptotically stable; its nonminimum phase properties, hence, are completely
characterized by the structure matrix f‘(s). The same is not true for the original
plant when P(s) is not analytic in Re s > 0. The set of points in Res > 0 where P(s)
has no poles is denoted by S. Fer all s €S it readily follows from (42) and (93) th-a
(95) that

rank P(s) = rank I(s) - v, = rank T{(s) -y, =rankP(s) .  (96)
1 1

Thus, for all s €8S rank i’(s) < n where rank P(s) < n, Itis also possible for rank f’(s)

to be less than n at the points in Re s > 0 where P(s) is not analytic. The set of all

points in Re s > 0 associated with nonminimum phase properties of i’(s) is, therefore

a subset of the corresponding set for P(s).

The above results suggest that the nonmi "'mum phase properties of the modified
plant are often equivalent to or less severe thar -hose of the original plant. One is
tempted to conclude from this fact that the class of T(s) realizable for the modified
plant in ‘he standard feedback configuration is equivalent to or larger than t'.at realiza-
ble with the original plant even when it is possible to stabilize the standard feedback
configuration without resorting to the use of the modified Luenberger observer, This

point has not yet been rigorously established, however.

Some additional observation ncerning the modified plant are now made. Itis

not difficult to verify using well known matrix identities that (92) is equivalent to

- A A -]l A 2la 2]
P(s)-(Hp+JpKO)(SIV -F )G {1 -Ki(sl -Fp) Gp] +J_ . (97)

P P P Py P
When the bracketed inverse in (97) is factored to the right and (35) is recalled, one

easily obtains the relationship

~ I _1 " -
Pls) = P(s)[lmp-Ko(slvp -F)TG) b (98)
1

19



Equation (98) clearly places in evidence the relation.aip between l;(s) ana P(s).
Since lg(s) is analytic in Re s > 0, the nonminimum phase properties of i’(s) are de-
termined by the points in Re s > 0 where all n-order minors of f’(s) are zero. The
Binet-Cauchy formula leads to the fact” that each n-order minor of f’(s) is the sum
of products of n-order minors of P(s) and [1 -Ko(sl\;pl - i-*p)"&p]‘l. It js not easy,
therefore, to relate in precise fashion the nonminimum phase properties of P(s) and
P(s) for nonsquare plants.

Considerable insight is obtainable for square plants. In this case mp = np and it
follows from (98) that

det B(s) = detPle) : (99)
det [‘n -Ky(sl, - Fp) Gp]
P P
or
det P(s) = —SetPla) — . (100)
det(slv - Fp) det(slv - Fp - GpKO)
P Py

Using (36) and

h(s) = det(sl —Fp-GpKO) (101)
Py
in (100) gives the compact relationship
" t (s)det P(s)
det P(s) = hiis) . (102)

By design the polynomial h(s) is free of zeros in Re s > 0. Since P(s) is a rational
matrix, it is also true that

a {s)

det P(s) = EE(S_ , (103)

P

!

where a (s) and B _(s) are polynomials. Moreover, Bp(s) divides the characteristic
denominator 1L'p(s) of P(s):

v (s)

ép(s) ='B‘D7?T (104)

P
is a polynomial in s. Substituting (103) and (104) into (102) yields

4 (s)a_(s)

detf’(s) = s) .

(105)

*See page 9 and equation (19) of reference [26].
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The zeros of det f’(s) ia Res > 0 account for the nonminimum phase properties
ot the modified plan.. Since h(s) strictly Hurwitz, it follows that the zeros of
detf’(s) in Res > 0 are the zerc " q_(8) and a _(s) in Re s > 0. The zeros of a_(s) i~

.28 > 0 are the points in Re s > ¢ where ranl. P(s) < n. Any zeros of &p(s) in Res > 0
are a result of the fact that P(s) is not analytic in Res > 0.

An example which demonstrates the generation of nonminimum properties in P(s)

when P(s) is unstable is easily generated. It is not difficult to verify for

S sl
P(s) = s+l s+2 (106)
1 stl
s-1 s+2
that
. 2 1 (s)
dt (s)=?1-—2-,=—p——B ) #0, Res> 0 . (107)
P
Also,
\"p(S) =(s-1)s+1)(s+2) . (108)
Thus,
v (s)
d(s) = Py = (s- Dis+1) (109)
P
and detP(s) = at s = +1.
A special case of interest is the single-input-output plant: np = mp =1, In
this case,
a_(s)
det P(s) = P(s) = B (5) (110)
P
and
\llp(s) = Bp(s) . (111)
Thus,
A A a (S)
det P(s) = P(s) - 75 (112)

and the nonminimum phase properties uf the modified plant are completely determine

by the zero-~ of the original plant ix. Res > 0.
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Conclusions

¥or tle class of plants satisfying the conditions of Theorem 3 tte transfer ma-
trices T(s) realizable using the standard feedback configuration have been precisely
Gefined. Much work remains for this class of plants, however. Fundamental questions
are in need of answers. Given that T(s) is realizable for P(s) one can expect in general
many combinations of C(s) and F(s) which yield the desired T(s). Which of these com-
binations is best? One possibility is to try to determine that combination which mini-
mizes in some sense the sensitivity of the system to plant parameter variatinns and/or
disturbance inputs. The ideas developed in [28] and [29] may prove usefvl in this re-
gard. Another possibility is to select that controller and feedback network having the
property that the sum of the dimensions of the state vectors for minimal realizations
of both these elements is a minimum, Some preliminary results in this regard are
contained in Chapter 9 of [22], Another possibility of course is a compromise between
the two already cited.

With regard to unstable plants the resuilts reported here ~ although extensive -
must be viewed as preliminary only. Much remains to be done. Suppose it is possible
tc stabilize a given P(s) using only the standard feedback configuration. What is the
class of T(s) rcalizable in this case without resorting to the addition of a modified
Luenberger observer? L es the addition of a modified Luenberger observer enlarge

the class of T(s) realizable in this same case?

Finally, one can question the sacredness of the stanoaird feedback configuration.
This configuration is only a special case of the system shown in Fig. 3. This figure

represents all possible plant compensation schemes. The connection network is

Compensation
Network
Ue Ye
. np
a ] Connection »— Plant
Network <
ISR B

Fig. 3. General Plant Compensation Configuration
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characterized by tae real, constant connection matrix M which relates the intercon-

nection of the system input u and the inputs and outputs of the compensation and plant:
ol [
i Iy
ol M [ 1"9_ .
~< u

The connection network can include operational amplifiers and this fact permits one —
for all practical purposes ~ to assume that the elements of M can take on any real
value. The compensation network includes all dynamical ccmponents of the system
except the plant. Any real, linear, finite-dimensional, time-invariant, asymptotically-
stable, dynamicai system s a possible choice for the compensation network. One can

now raise all the previous questions with regard to the admissable classes of connection

matrices and compensation networks just described for the configuration shown in

Iig. 3. Work direcizd toward answering these questions is presently under way.

AR
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Appendix

A method for achieving the plant factorization (66) is now described. It is
assumed that P(s) is analytic in Res > 0 and rank P(jlnk)< n, w > 0. Since P(s) is a
real matrix, it follows that rank P(-jmk )< n.

The matrix

A
P, (s) ={1_+—= + —= P(s) (A. 1)
k n o os-ju, K

is now considered where the matrix A is selected in accordance with the following
considerations. From the fact that rank P(jwk) <y, it follows that there exists a non-

zero complex vector b such that

b PGyl =0’ . (A.2)

The vector b can be written as

b=b,+jb, |, (A.3)

where bl and b2 are real vectors. Two possibilities exist: e ther the vectors b1 and
b2 are linearly dependent or they are linearly independent. The former case is

considered first.

When the real vectors b, and b2 are linearly dependent one can write

by=¢2
, (A. 4)
b, =¢,3

where € and c, are real scalars and the real vector a satisfies
pod

||3\|EJ;“;=J~'—§=1 . (A. 5)

Then
b=(c,+jc,Ja=ca, c#0 (A.6)
and
b P(jw,) =Ta'Plju,) = 0! (A.7)
nplies
1y oAt
The choice
A=A=-aa (A.9)
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is now considered. Equation (A. 1) becomes

P (s) = Vi (=a)P(s) (A.10)
where
-1 2523’
Vi (8) =1, +—=— . (A.11)
s +tw
k
Clearly,
vile) = 1im v (s = 1
k —83!; K (8) =1, {A.12)
and
Py (=) = sli:r; ?k(s) = P(») ; (A.13)

thus, both Pk(s) and V{(l(s) are proper matrices. Using the fact that
det(ln+AB) = det(lm+BA) (A.13)

for an arbitrary n x m matrix A and an arbitrary m x n matrix B, one easily obtains
from (A.11) that

-1 2sa’a sz+Zs+w12r
detV, "(s) = det |1 + —5—— = (A.14)
k Z+ 2 32+ 2
$ T “
Equation (A. 14) establishes that
detVil(s) = nonzero finite complex number, Res > 0, s # ijuxk . (A.15)
Hence,
rankPk(s) = rank P(s), Res > 0, s iy (A. 16)

Equation (A. 16) is important since it shows that the set of points in Res > 0, s #ijwk,
where rank Pk(s) < n is the same set of points in Res > 0, s # £ju,_, where rank P(s)
< 1.,

The next point that one needs to make is that Pk(s) is analytic at s = jw,. This

fact follows immediately from

—. - ~1
(s + ka)Pk(s) . = (s + ka)Vk (s)P(s) N =0 (A.17)
8 = ika 8 ::ka
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E It is also obvious from (A.10) and (A. 11) that Pk(s) is analyticin Res > 0, s #:tjwk.

: Thus, P, (s) is analytic in Re s > 0 infinity included.

The final property of Pk(s) which is inve stigated is rank Pk(:tjwk). This is best
done by first defining in lexicographic order all the corresponding n'th-order minors
of Pk(s) and P(s). The j'th such minor of Pk(s) and P(s) is denoted by A%l’tj)and Ag" j).
respectively. It immediately follows from (A. 10}, (A.14), and the Binet- Cauchy

formula (see [26], p. 12) that

2 2 -
() _ (2 2% ) .
A = A . (A.18)
Pk 2 2 P
s +w
k
Since rank P(tjwk) < n, it follows that for each j
V.
(nj _, .2 2, ¢ %n,j)
P O R SIS S I (A.19)
where A gl'j) # 0 and is finite at s = +jw, . Thus,
vj-l
j 2 2., 2 2 ~(n,j
A(IQ"JL (s°+ 25+ w ) (s +wy) Aé,“ o (A.2D)

k

Clearly, if for any j it is true that v, =1 then there is one n'th-order minor of Pk(s)
which is not zero at s = ijwk and rank Pk(xjwk) = n. When it is not true that \)j =1 for
any j, then although rank Pk(:tjwk) is still less than n one has reduced the order of the
factor s + Wy in each of the n'th-order minors of P(s) by one. The above process can
then be repeated a finite number of time - provided each time that the new vectors 13

and b, are linearly dependent — until a matrix is obtained whose rank is n at s= :tjwk.

Before considering the case in which the vectors bl and b2 are linearly inde-
pendent, some additional observations are now made. First, the above developments
: are easily applied to the case rank P(0) < n. For this case, one has immediately that
there exists a real vector a satisfying (A. 8) with W = 0 since P(s) is a real matrix.

The final observation is in regard to the fact that (A.10) is not the ultimate relationship

fudhtad B4

E sought. One needs instead
P{s) - Vk(s)Pk(s) . (A.21)
It is easy to verify that
1 2saa’
V,{(s) =1 -—5—"T="—0o0 (A.22)
k " s2 +2s+ wz
: k
26

o



IO

o ran

e

-1
satisfies Vk(s) Vi (s) = 1 . Equation (A.22) exposes the fact that Vk(s) is a proper

matrix analytic in Re s > 0.

Attention is now turned to the case where b1 and bz are linearly independent. It
is first noted that when the complex vector a # o, satisfies

then

satisfies

*
a Plioy) =0,

b:e"-'

e

Also, 9 can always be selected so that with 4 a real scalar

Thus, writing

where a, and a
~l ~

8% - uso0

~ han

5 are real vectors, leads to

a'a=(ala,-a’a )+j(a'2a +a’a)=u

Since u is real, it immediately follows from (A, 28) that

' v ot
aya taja;=2aja,=0

and

It is also true that

%

' v,
21217252, H

' ! _
a=2a,+aza,=1

because of (A.29), Adding (A. 30) and (A. 31) yields

Subtracting (A. 30) from (A. 31) gives

TP |
aja; =3 (1+u)
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Now
n n
u=laal=1) afl< ) laj?=falf=1 . (A.34)
i=1 i=1
Hence,
0<u<l . (A. 35)

Since (A. 33) shows that a, =0, when 4 =1, it follows that a ‘s real in this case and

the results already derived are applicable. It is, therefore, assumed in the sequel

that
0<u<l . (A. 36)
The choice
{ A= i?.* (A.37)
, in (A.1) is now considered. With this choice
| P (s) = Vi (a)P(s) (A. 38)
where
* —
( v'l(s) ={1 + ia’.i + 3: . (A.39)
k noos-juy st jwy
Now
' 28’ = (23] +2,%) +1(23) -2,2)) (A.40)
and
aa' = (aa¥) . (A.41)

Thus, (A. 39) becomes

]
i 2s(a,a’ +a,a’) 2w, (a,a’ -a,a’)
Vi;l(s) =11 4 ~1o]l 7 L2.2 + k'ala2 241 . (A.42)
n 2, 02 % 4 w?
£ s k k
Clearly,
-1 . | _
Vk (¢) = lim Vk (s) = 1n (A. 43)
sa@
28
] .




and

Pk(-’): lim Pk(s) = P(») ; (A.44)

[ Rl 4
thus, both Pk(s) and Vl'cl(s) are again proper matrices.

As before, the determinant of V;l(s) is of interest. Now, however, more work
is required in order to evaluate this quantity. The computation is facilitated by con-
structing the orthogonal matrix

Q=[q; 9, q,] . (A.45)

where

= ———— {(A. 46)

and

g, = —— . (A.47)

T flaew

That q; and q, are orthogonal is an immediate consequence of (A.29). It is alfo clear
from (A. 32) and (A. 33) that

g l=lgl=1 . (A. 43)
It now follows that
'
1 2 A 1+ 1
Iy p™ S . |98 ’ - [
Qv (s1Q=1 + z,.Z )| : [('2—’)219.1 +(T)‘3222] (9 9]
s k ql
~n
ql
20 9 ) Z
x \|~ 1. . ]- .
+( Z 2) : ( 73 )319.2'( 2 )329,1] la;70q,) + (449
s +U.)k ’
q
or - .1
2
( ) e A len
1+ 1zmsz é{ )
] +u-lk s + wk
OZ,n-Z
PR | l-uz
Qv (s)Q-= -k 14 U-p)s
s +wl?; s + wi
(A.50)
L On-2,2 -z




Since

detV (s) = det[QV ( Q) |, (A.53%)

one easily 0 lzins from (A. 50) tha’

L stezsrel s a-ud)
detV Ys) = . {A.52)
s2 + wz
k
Mow 0 < u < 1 and it follows from (A. 52), therefore, tnat
det V{;l(s) = nonzero finite ccmplex number, Res > 0, s # ijwk . (A.53)
Hence,
3
rank Pk(s) = rank P(s), Res > 0, s # ijwk (A. 54)
E just as in the previous case considered.
3 From (A. 38) and (A.42) it is clear that P, (s) is analytic in Res > 0, s # .
i It is now established that P, (s) is analytic at s = £jw, as well. One has from (/.. 42)
i that
2s(a,a’ ta a ) 2w, (a,al-aja’)
1 - -1 e ~lal T L242 k.12 2.1
(s F ka)Vk (s) =(s + ka)l“ + s = ka) + s 2 jwk) {A.55)
Hence,
R | )
(s -jw )V (s)| s ~1 aja’) + jlaja)-ajar) = (A. 56)
s=+1w
Tk
3 and
; (s+j0 )V (s) = (2] +a,2)) - jlayal -ajah) = (@aF) . (A.57)
3 k k : 2 n] ~2 -~ o~
3 S = -Jmk
Since (A, 23) also implies
a* P(ju) =a” P-ju) =0l (A.58)
one readily concludes from (A. 56) and (A.57) that
(8 F ju IV -1 (5)P(s) =0 . (A.59)
s=¢ jll)k

Thus, Pk(s) is analytic in Re s > 0 infinity included.
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The final property of Pk(s) which is investigated is rank Pk(:l: ju,). Instead of
{A.18) one now obtains

2 2 2
3 _ 8 +Zs+wk+l-u ) (n, )
AP = 3 3 AP . (A.60)
k 8 +wk

Since 0 < u < 1, all of the discussion following (A. 18) is again app’icable. Moreover,
now when rank Pk(:l:jmn) < n one is assured that the process ca 1 be repeated.

The last item requiring consideration is the computation of Vk(s). Clearly,

-1
v (s) = QQ'V; (0] Q' (A.6.)
or from (A. 50}
sz+(l-u)s+w12< -wal-uZ
d(s) d(s)
02, n-2
ey -0 Wy l-uz sz+(l+u)s+w§
’ d(s) d(s) Q . (A.62)
B on-Z, 2 l1'1-2 -
where
dls) = s242s+wl + (1-ud) . (A.63)

Since Q is a real finite orthoyonal matrix and since 0 < u < 1, one has that Vk(s) is
analytic in Re 8 > 0 infinity included.

One case remains to be considered. It is the one in which rank P(j®) <n. The

matrix

P_(s) = V_}(s) P(s) (A.64)
is considered where

Viis) = (1 +aa's) . (A. 65)
The real vector a is one which satisfies “3“ =1 and

F Blio) - a'Dlo) = of
a P(Jw)-:_a._P( )-gm (A.66)
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Clearly,
lim 2P (s) = lim aa’ P(s) = O . (A.67)

g g - n, m
Thus, P,(s) is analytic at infinity or, equivalently, P,.(-) ig finite. That is, P.(s) is
a proper matrix analytic in Res > 0.

It readily follows from (A.65) that
AV He) =148 . (A.68)

Hence, for all finite s # -1 it follows that

rank Pk(s) = rank P(s) . (A.69)
Moreover, in piace of (A.18) one now has

A‘;,’;j) - s+ aimd (A.70)
The minor A(I;" 3 is a rational function of s and the degree of the denominator poly-
nomial is less than the degree of the numerator polynomial for all j. Because of
(A. 70) it is clear that the difference between the degrees of the denominator and
numerator polynomials of Ag’j) is one less than the same difference for Ag,' j).
Hence, either rank P_(®) = n :r the process indicated here can be repeated a finite

number of times until a matrix with rank equal to n at infinity is obtained.

The final item requiring consideration is the computation of V_(s). It is easy
to verify that
aa’s
s+1

Vgls) =1 - (A.71)

Clearly, V_(s) is a proper matrix analytic in Res > 0.

Given a plant transfer matrix P(s) there is at most a finite number of points on
the imaginary axis of the complex s-plane at which rank P(s) < n. This is so because
P(s) is rational and has normal rank n. Repeated applications of the factorizations

described in this appendix then leads to

q -
P(s) =[kl;ll Vk(s) } Pq(s) R (A.72)
where Pq(s) and
q
V_(s)= T V, (s) (A.73)
T ka1 K

are both proper matrices analytic in Re s > 0 and rank Pq(jw) is n for all w infinity
included,
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